Climate change will affect the pattern of deaths from exposure to high or low temperatures. However, the effect on actual disease burden cannot be quantified, as we do not know to what extent deaths during thermal extremes are in sick/frail persons who would have died soon anyway.
In 2030 the estimated risk of diarrhoea will be up to 10% higher in some regions than if no climate change occurred. Since few studies have characterized this particular exposure-response relationship, these estimates are uncertain.
Estimated effects on malnutrition vary markedly among regions. By 2030, the relative risks for unmitigated emissions, relative to no climate change, vary from a significant increase in the South- East Asia region to a small decrease in the Western Pacific. Overall, although the estimates of changes in risk are somewhat unstable because of regional variation in rainfall, they refer to a major existing disease burden entailing large numbers of people.
The estimated proportional changes in the numbers of people killed or injured in coastal floods are large, although they refer to low absolute burdens. Impacts of inland floods are predicted to increase by a similar proportion, and would generally cause a greater acute rise in disease burden. While these proportional increases are similar in developed and developing regions, the baseline rates are much higher in developing countries.
Changes in various vector-borne infectious diseases are predicted. This is particularly so for malaria in regions bordering current endemic zones. Smaller changes would occur in currently endemic areas. Most temperate regions would remain unsuitable for transmission, because either they remain climatically unsuitable (e.g., most of Europe) or socioeconomic conditions are likely to remain unsuitable for reinvasion (e.g., southern United States). Uncertainties relate to how reliable is extrapolation between regions, and to whether potential transmission will become actual transmission.
Application of these models to current disease burdens suggests that, if our understanding of broad relationships between climate and disease is realistic, then climate change may already be affecting human health.
The total current estimated burden is small relative to other major risk factors measured under the same framework. However, in contrast to many other risk factors, climate change and its associated risks are increasing rather than decreasing over time.
(Source: WHO)